1: MTC MNL Mode Choice

1: MTC MNL Mode Choice

import pandas as pd
import larch.numba as lx

This example is a mode choice model built using the MTC example dataset. First we create the Dataset and Model objects:

d = lx.examples.MTC(format='dataset')
d
<xarray.Dataset>
Dimensions:    (caseid: 5029, altid: 6)
Coordinates:
  * caseid     (caseid) int64 1 2 3 4 5 6 7 ... 5024 5025 5026 5027 5028 5029
  * altid      (altid) int64 1 2 3 4 5 6
    alt_names  (altid) <U7 'DA' 'SR2' 'SR3+' 'Transit' 'Bike' 'Walk'
Data variables: (12/38)
    hhid       (caseid) int64 2 3 5 6 8 8 12 ... 9429 9430 9433 9434 9436 9438
    perid      (caseid) int64 1 1 1 1 2 3 2 2 1 1 2 2 ... 2 1 1 2 1 1 1 1 1 1 1
    numalts    (caseid) int64 2 2 2 2 2 2 2 2 2 2 2 2 ... 2 2 2 2 2 2 2 2 2 2 2
    dist       (caseid) float64 7.69 11.62 4.1 14.58 ... 4.34 12.06 2.95 0.73
    wkzone     (caseid) int64 664 738 696 665 679 ... 1002 1012 1009 1030 1021
    hmzone     (caseid) int64 726 9 667 8 704 665 ... 978 1023 1019 1030 1021
    ...         ...
    ivtt       (caseid, altid) float64 13.38 18.38 20.38 25.9 ... 1.59 6.55 0.0
    ovtt       (caseid, altid) float64 2.0 2.0 2.0 15.2 2.0 ... 4.5 16.0 4.5 0.0
    tottime    (caseid, altid) float64 15.38 20.38 22.38 ... 17.59 11.05 19.1
    totcost    (caseid, altid) float64 70.63 35.32 20.18 115.6 ... 75.0 0.0 0.0
    altnum     (caseid, altid) int64 1 2 3 4 5 0 1 2 3 4 ... 3 4 0 6 1 2 3 4 5 6
    avail      (caseid, altid) int8 1 1 1 1 1 0 1 1 1 1 ... 1 1 0 1 1 1 1 1 1 1
Attributes:
    _caseid_:  caseid
    _altid_:   altid
m = lx.Model(d)

Then we can build up the utility function. We’ll use some :ref:idco data first, using the Model.utility.co attribute. This attribute is a dict-like object, to which we can assign :class:LinearFunction objects for each alternative code.

from larch import P, X, PX
m.utility_co[2] = P("ASC_SR2")  + P("hhinc#2") * X("hhinc")
m.utility_co[3] = P("ASC_SR3P") + P("hhinc#3") * X("hhinc")
m.utility_co[4] = P("ASC_TRAN") + P("hhinc#4") * X("hhinc")
m.utility_co[5] = P("ASC_BIKE") + P("hhinc#5") * X("hhinc")
m.utility_co[6] = P("ASC_WALK") + P("hhinc#6") * X("hhinc")

Next we’ll use some idca data, with the utility_ca attribute. This attribute is only a single :class:LinearFunction that is applied across all alternatives using :ref:idca data. Because the data is structured to vary across alternatives, the parameters (and thus the structure of the :class:LinearFunction) does not need to vary across alternatives.

m.utility_ca = PX("tottime") + PX("totcost")

Lastly, we need to identify :ref:idca data that gives the availability for each alternative, as well as the number of times each alternative is chosen. (In traditional discrete choice analysis, this is often 0 or 1, but it need not be binary, or even integral.)

m.availability_var = 'avail'
m.choice_ca_var = 'chose'

And let’s give our model a descriptive title.

m.title = "MTC Example 1 (Simple MNL)"

We can view a summary of the choices and alternative availabilities to make sure the model is set up correctly.

m.choice_avail_summary()
name chosen available
altid
1 DA 3637 4755
2 SR2 517 5029
3 SR3+ 161 5029
4 Transit 498 4003
5 Bike 50 1738
6 Walk 166 1479
< Total All Alternatives > 5029

Having created this model, we can then estimate it:

m.maximize_loglike()
keyvalue
loglike-3626.18625551293
x
0
ASC_BIKE -2.376e+00
ASC_SR2 -2.178e+00
ASC_SR3P -3.725e+00
ASC_TRAN -6.709e-01
ASC_WALK -2.068e-01
hhinc#2 -2.170e-03
hhinc#3 3.577e-04
hhinc#4 -5.286e-03
hhinc#5 -1.281e-02
hhinc#6 -9.686e-03
totcost -4.920e-03
tottime -5.134e-02
tolerance2.0071751679019565e-06
stepsarray([1., 1., 1., 1., 1., 1., 1., 1., 1., 1.])
message'Optimization terminated successfully.'
elapsed_time0:00:00.230719
method'bhhh'
n_cases5029
iteration_number0
logloss0.7210551313408093
__verbose_repr__True
m.calculate_parameter_covariance()
m.parameter_summary()
  Value Std Err t Stat Signif Null Value
ASC_BIKE -2.38  0.305 -7.80 *** 0.00
ASC_SR2 -2.18  0.105 -20.81 *** 0.00
ASC_SR3P -3.73  0.178 -20.96 *** 0.00
ASC_TRAN -0.671  0.133 -5.06 *** 0.00
ASC_WALK -0.207  0.194 -1.07 0.00
hhinc#2 -0.00217  0.00155 -1.40 0.00
hhinc#3  0.000358  0.00254  0.14 0.00
hhinc#4 -0.00529  0.00183 -2.89 ** 0.00
hhinc#5 -0.0128  0.00532 -2.41 * 0.00
hhinc#6 -0.00969  0.00303 -3.19 ** 0.00
totcost -0.00492  0.000239 -20.60 *** 0.00
tottime -0.0513  0.00310 -16.57 *** 0.00

It is a little tough to read this report because the parameters can show up in pretty much any order, as they are not sorted when they are automatically discovered by Larch. We can use the reorder method to fix this:

m.ordering = (
    ("LOS", "totcost", "tottime", ),
    ("ASCs", "ASC.*", ),
    ("Income", "hhinc.*", ),
)
m.parameter_summary()
    Value Std Err t Stat Signif Null Value
Category Parameter          
LOS totcost -0.00492  0.000239 -20.60 *** 0.00
tottime -0.0513  0.00310 -16.57 *** 0.00
ASCs ASC_BIKE -2.38  0.305 -7.80 *** 0.00
ASC_SR2 -2.18  0.105 -20.81 *** 0.00
ASC_SR3P -3.73  0.178 -20.96 *** 0.00
ASC_TRAN -0.671  0.133 -5.06 *** 0.00
ASC_WALK -0.207  0.194 -1.07 0.00
Income hhinc#2 -0.00217  0.00155 -1.40 0.00
hhinc#3  0.000358  0.00254  0.14 0.00
hhinc#4 -0.00529  0.00183 -2.89 ** 0.00
hhinc#5 -0.0128  0.00532 -2.41 * 0.00
hhinc#6 -0.00969  0.00303 -3.19 ** 0.00
m.estimation_statistics()
StatisticAggregatePer Case
Number of Cases5029
Log Likelihood at Convergence-3626.19-0.72
Log Likelihood at Null Parameters-7309.60-1.45
Rho Squared w.r.t. Null Parameters0.504